On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo.

نویسندگان

  • Sarah Filippi
  • Chris P Barnes
  • Julien Cornebise
  • Michael P H Stumpf
چکیده

Approximate Bayesian computation (ABC) has gained popularity over the past few years for the analysis of complex models arising in population genetics, epidemiology and system biology. Sequential Monte Carlo (SMC) approaches have become work-horses in ABC. Here we discuss how to construct the perturbation kernels that are required in ABC SMC approaches, in order to construct a sequence of distributions that start out from a suitably defined prior and converge towards the unknown posterior. We derive optimality criteria for different kernels, which are based on the Kullback-Leibler divergence between a distribution and the distribution of the perturbed particles. We will show that for many complicated posterior distributions, locally adapted kernels tend to show the best performance. We find that the added moderate cost of adapting kernel functions is easily regained in terms of the higher acceptance rate. We demonstrate the computational efficiency gains in a range of toy examples which illustrate some of the challenges faced in real-world applications of ABC, before turning to two demanding parameter inference problems in molecular biology, which highlight the huge increases in efficiency that can be gained from choice of optimal kernels. We conclude with a general discussion of the rational choice of perturbation kernels in ABC SMC settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation

Methods of Approximate Bayesian computation (ABC) are increasingly used for analysis of complex models. A major challenge for ABC is over-coming the often inherent problem of high rejection rates in the accept/reject methods based on prior:predictive sampling. A number of recent developments aim to address this with extensions based on sequential Monte Carlo (SMC) strategies. We build on this h...

متن کامل

Automatic Kernel Selection for Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte Carlo

The current work introduces a novel combination of two Bayesian tools, Gaussian Processes (GPs), and the use of the Approximate Bayesian Computation (ABC) algorithm for kernel selection and parameter estimation for machine learning applications. The combined methodology that this research article proposes and investigates offers the possibility to use different metrics and summary statistics of...

متن کامل

On sequential Monte Carlo, partial rejection control and approximate Bayesian computation

We present a sequential Monte Carlo sampler variant of the partial rejection control algorithm introduced by Liu (2001), termed SMC sampler PRC, and show that this variant can be considered under the same framework of the sequential Monte Carlo sampler of Del Moral et al. (2006). We make connections with existing algorithms and theoretical results, and extend some theoretical results to the SMC...

متن کامل

Approximate Bayesian Computation for Smoothing

We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation m...

متن کامل

Sequential Monte Carlo for Bayesian Computation

Sequential Monte Carlo (SMC) methods are a class of importance sampling and resampling techniques designed to simulate from a sequence of probability distributions. These approaches have become very popular over the last few years to solve sequential Bayesian inference problems (e.g. Doucet et al. 2001). However, in comparison to Markov chain Monte Carlo (MCMC), the application of SMC remains l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistical applications in genetics and molecular biology

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2013